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A B S T R A C T   

Vacancy diffusion serves a crucial role in many important kinetic behaviors and properties of multicomponent 
alloys. Essential questions, however, persist regarding how chemical complexity affects diffusion and what 
unique characteristics, if any, set these alloys apart from traditional metals. Using neural network kinetics model, 
we study vacancy diffusion in NbMoTa alloy across a broad temperature range (2600 to 800 K). Unlike pure 
metals, the two key diffusion parameters—diffusion correlation factor f and activation energy ΔGm—are not 
constant in alloys, but instead substantially decrease with decreasing temperature. This temperature dependence 
arises from a reduced number of active vacancy jump pathways at lower temperatures, leading to more corre-
lated diffusion. Upon examining vacancy diffusion throughout the entire compositional space of the Nb-Mo-Ta 
system, we discover that the slowest vacancy diffusion surprisingly occurs in the non-equimolar region, rather 
than the equimolar concentration where the configurational entropy is highest. The diffusion barrier spectrum, 
characterizing the diffusion energy landscape, is an intrinsic material characteristic, which controls both f and 
ΔGm and, thereby, the diffusivity. Finally, we find that the vacancy diffusion rate drops noticeably in the 
presence of local chemical order in the NbMoTa system, particularly for MoTa alloys with long-range B2 order.   

1. Introduction 

Diffusion transporting atoms from one point to another controls a 
variety of kinetic processes or behaviors, such as precipitation [1], phase 
nucleation [2], and radiation-induced void formation [3]. From a 
microscopic perspective, diffusion in crystalline solids stems from 
thermally-activated atomic jumps between nearest neighboring sites 
that are mediated by lattice defects such as vacancies (vacancy mecha-
nism) [4]. This enables a description of the vacancy diffusivity, or 
diffusion rate, through physical quantities pertaining to the inherent 
material properties, defined as D = fλ2Zv0exp( − ΔEm /kBT) /6, where λ, 
Z, v0, kB, and T denote the jump distance, coordination number, attempt 
frequency, Boltzmann constant, and temperature, respectively [4]. In 
this equation, f and ΔEm, representing diffusion correlation factor and 
vacancy migration energy barrier, are the two decisive parameters 
determining vacancy diffusivity at a given temperature. In pure metals, 
there is a unique migration barrier associated with each jump pathway 
on a smooth diffusion energy landscape [5,6]. Vacancy jumps towards 
each nearest neighboring site occur at the same rate, giving rise to the 
uncorrelated lattice jump (random walk) characterized by a constant 

correlation factor, f . In contrast, local chemical fluctuations, particularly 
in multicomponent alloys, alter the energy barriers along different 
pathways. This results in a broad distribution of migration barriers 
(spectrum) and a rugged energy landscape [7–9]. Given the vast 
compositional scope of a multicomponent alloy [10,11], it remains un-
clear how the chemical complexity and chemical ordering influence f 
and ΔEm that have such a pivotal role in vacancy diffusivity. 

The emergence of multi-principal element alloys (MPEAs), 
commonly known as high entropy alloys (HEAs) [12,13], has attracted 
increasing attention due to some of the extraordinary properties, 
including high-temperature strength [14,15], high corrosion resistance 
[16], and enhanced radiation tolerance [17]. These properties are 
closely related to, if not fully determined by, diffusion. Mainly moti-
vated by the high entropy concept and consciously circumventing the 
challenges posed by the vast compositional space, research has been 
concentrated on the equimolar concentration of HEAs [10,18]. The 
concept of "sluggish diffusion” [19], suggesting slower diffusion kinetics 
in HEAs compared to their constituent components, has sparked a 
decade-long discussion about the role of configurational entropy 
[19–30]. The original hypothesis behind this concept is that the 
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diffusion activation energy is positively related to the number of 
composing elements in the alloy that accounts for the sluggish diffusion 
[19]. The high-dimensional compositional space that an MPEA holds 
and the local chemical complexity pose a grand challenge to our 
fundamental understanding of vacancy diffusion in these materials. 

In this study, we aim to elucidate the interplay between vacancy 
diffusion and chemical complexity in multicomponent alloys. By 
employing a recently formulated vacancy jump-resolved neural network 
kinetics model [31] and a ternary Nb-Mo-Ta system, we find that 
diffusion correlation factor, f , and activation energy, ΔGm, significantly 
decrease with a reduction in temperature from 2600 to 800 K. By 
exploring vacancy diffusivity across the entire ternary compositional 
space, we determine that the composition with the lowest diffusivity is 
not equimolar. Furthermore, we demonstrate that the inherent diffusion 
barrier spectrum, a material constant that depicts the underlying diffu-
sion energy landscape, regulates diffusivity by governing both f and 
ΔGm. Lastly, we reveal that the presence of chemical short-range order 
in Nb-Mo-Ta alloy reduces vacancy diffusivity. This decrease becomes 
even more pronounced in Mo-Ta alloys that exhibit long-range B2 order. 

2. Methods 

2.1. Material model and diffusion barrier calculation 

We study the refractory Nb-Mo-Ta as the model system to demon-
strate vacancy diffusion behaviors in multicomponent alloys. To create 
vacancy barrier datasets for training neural networks, we use atomic 
models that have a size of 10 × 10 × 10 unit cells, containing 2000 
atoms. The climbing image nudged elastic band (CI-NEB) [32] method is 
adopted to compute the saddle point and vacancy migration barrier in 
the Nb-Mo-Ta alloys using a machine learning potential [33]. For a 
configuration of a vacancy, eight final configurations are prepared by 
swapping the vacancy with its first nearest neighboring atoms. This al-
lows us to label and prepare each diffusion path, creating 
path-dependent diffusion energy barriers. Prior to the CI-NEB calcula-
tion, both the initial and final configurations are optimized to reach their 
respective local energy minimum states. The CI-NEB inter-replica spring 
constant is set to be 5 eV/Å

2
, and the energy tolerance and force toler-

ance are 0 eV and 0.01 eV/Å, respectively. The choice of parameters that 
optimize convergence of the calculations results in essentially the same 
energy barrier using smaller tolerance and large spring constant. When 
modeling vacancy diffusions, we use relatively large atomic models of 
40 × 40 × 40 unit cells (containing 128,000 atoms). In Sections 3–5, 
the models for the alloys are prepared as random solid solutions. In 
Section 6, we use the equimolar NbMoTa model with short-range order, 
generated from neural network kinetic Monte Carlo with 10 million 
vacancy jumps. 

2.2. Vacancy migration barrier prediction 

We construct a neural network to predict vacancy barriers in atomic 
configurations and alloy compositions. The network consists of 4 hidden 
layers, with 128 neurons in each layer. To train this model, we created 
datasets from forty-six distinct compositions, uniformly distributed 
within the ternary Nb-Mo-Ta space [31]. This sampling strategy is 
designed to provide the neural network with a broad spectrum of 
composition concentrations, enhancing its ability to generalize and 
perform effectively on previously unseen compositions. For each 
composition, we compute 16,000 barrier data points. Fig. 1a compares 
the predicted migration barriers with the calculated values from CI-NEB 
on the equimolar NbMoTa, Nb20Mo60Ta20, and Nb10Mo10Ta80, respec-
tively. The test results on the new compositions and configurations show 
a notable prediction performance of the neural network model. We train 
a series of neural networks with varying number of layers and number of 
neurons in each layer, to understand the influence of network archi-
tecture on prediction performance. Further details on this aspect are 
elaborated on here [31]. Fig. 2a-b presents the predicted diffusion bar-
rier diagram for Nb-Mo-Ta, using color coding to indicate the mean 
barrier and standard deviation, respectively. Given the high efficiency 
and accuracy of the model in predicting migration barriers, we can 
effectively calculate the vacancy diffusivities throughout the entire 
ternary space. 

2.3. Neural network kinetic Monte Carlo 

Vacancy diffusion is performed using the kinetic Monte Carlo algo-
rithm with the vacancy barriers predicted from the neural network [31]. 
Diffusion occurs through a vacancy jumping to its nearest neighbor sites, 
each of which with a rate defined as ki = k0exp( − ΔEm,i /kBT), where k0, 
kB, T denotes the attempt frequency, Boltzmann constant, and temper-
ature, respectively. In this equation, the ΔEm,i represents the vacancy 
migration barrier along the jump path i. The accurate migration barriers 
associated with the eight jump paths in Nb-Mo-Ta alloys are effectively 
obtained from neural network. The total jump rate R is the sum of all 
individual elementary rate, R =

∑8
i=1ki. To simulate the vacancy jump, 

we first draw a uniform random number u ∈ (0, 1] and select a migra-
tion path p, which satisfies the condition [34], 
∑p− 1

i=1 ki/R ≤ u ≤
∑p

i=1ki/R. The vacancy jump along path p is executed 
through the exchange between the vacancy and the selected neighboring 
atom. 

3. Vacancy diffusion correlation and the correlation factor 

Vacancy diffusion in crystalline solids occurs through a sequence of 
jumps from one lattice site to its neighboring sites. The net displace-
ment, R, of a vacancy after n jumps is defined as, R =

∑n
i=1ri, where ri 

denotes the displacement vector of ith jump. The square magnitude of 

Fig. 1. Testing of the neural network in predicting vacancy migration energy barriers in three compositions, including the equimolar NbMoTa, Nb20Mo60Ta20 and 
Nb10Mo10Ta80. The prediction error is measured by the mean absolute error. 
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the net displacement, R2, can be formulated as R2 = (
∑n

i=1ri)
2 
=
∑n

i=1r2
i 

+ 2
∑n− 1

i=1
∑n

j=i+1rirj. When considering jumps to the first nearest 
neighbor site at a constant distance, the squared displacement R2 can be 
written as R2 = nλ2 + 2λ2 ∑n− 1

i=1
∑n

j=i+1cosθij, where λ represents the 
jump distance or first nearest neighbor distance, and θij denotes the 
angle between ith and jth jumps. By averaging R2 over the ensemble, we 
obtain the mean square displacement (MSD), 〈R2〉 = 〈n〉λ2 +

2λ2 ∑n− 1
i=1

∑n
j=i+1〈cosθij〉. In the equation, the first term 〈n〉λ2, named as 

accumulative mean square displacement (aMSD) 〈R2
a〉, represents the 

mean square of all individual jump displacements [7]. The second term 
2λ2 ∑n− 1

i=1
∑n

j=i+1〈cosθij〉 takes into account the influence of the angle 
between each pair of jumps, reflecting jump correlation. For random or 
uncorrelated diffusion, such as diffusion in a pure metal, each jump is 
independent of all historical jumps and the double sum term reduces to 
zero because on average cosθij can have an equal chance of being 

negative and positive, making both MSD and aMSD equivalent and equal 
to 〈n〉λ2. In the case of non-random diffusion where correlation between 
jumps exists due to positional memory effect [4], the double sum term 
becomes negative, leading to the decrease in 〈R2〉 (i.e., the net diffusion 
distance). The diffusion correlation factor, defined as the ratio between 
〈R2〉 and 〈R2

a〉 as, f = 1+ 2
∑n− 1

i=1
∑n

j=i+1〈cosθij〉/n = 〈R2〉/〈R2
a〉, is to 

quantify the degree of diffusion correlation. Having access to both 〈R2〉

and 〈R2
a〉 in the neural network kinetics method, we can compute f 

accurately and evaluate the role of chemical complexity in diffusion 
correlation . 

Fig. 3a presents the vacancy diffusion trajectories in pure Nb after 
performing 400 jumps at a wide range of temperatures, for 2600, 800, 
and 400 K, from kinetic Monte Carlo based on our neural network ki-
netics model. We conduct five independent simulations at each tem-
perature, resulting in five trajectories, denoted by various colors in the 
figure. Notably, the vacancies have effectively migrated across a large 

Fig. 2. (a-b) demonstrate the predicted mean and standard deviation of the vacancy migration barrier spectra across the ternary space.  

Fig. 3. Vacancy diffusion behavior in pure Nb. (a) The recorded diffusion trajectories of five individual vacancies at 2600, 800, and 400 K after 400 atom jumps. 
Different colors correspond to different vacancies. (b) The corresponding mean square displacement 〈R2〉 and accumulative mean square displacement 〈R2

a〉 as a 
function of vacancy jumps. 
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region after 400 jumps especially at high temperatures. Fig. 3b illus-
trates the two square displacements, 〈R2〉 and 〈R2

a〉, as a function of 
vacancy jumps. The value of 〈R2〉 is slightly smaller than 〈R2

a〉, sug-
gesting a high degree of diffusion uncorrelation (i.e., a larger diffusion 
correlation factor). The range of 〈R2〉 remains relatively constant across 
different temperatures (Fig. 3b), implying a temperature-independent 
diffusion correlation. For comparison, we perform the same vacancy 
diffusion simulations in the equimolar NbMoTa. Fig. 4a illustrates the 
vacancy trajectories after the same number of 400 jumps at 2600, 800 
and 400 K. In contrast to pure Nb, the trajectories exhibit a very 
noticeable decrease in migration distance as the temperature is lowered. 
At 400 K, the trajectories are substantially shortened, indicating va-
cancies have only traveled a short distance after 400 jumps. In Fig. 4b, 
we highlight the 〈R2〉 values at the three corresponding temperatures. 
It’s evident that the 〈R2〉 values decrease at lower temperatures, sug-
gesting a temperature-dependent diffusion correlation. 

Fig. 5 presents the diffusion results over a temperature range from 
2600 to 800 K, to investigate the temperature dependence of the cor-
relation factor. Fig. 5a illustrates the variation of 〈R2〉 and 〈R2

a〉 as a 
function of diffusion jumps for Nb, with the 〈R2〉 curves color-encoded 
by their corresponding temperatures. The overlapping of 〈R2〉 signifies 
that the diffused square displacement of vacancy is essentially constant 
in Nb as temperature varies. In NbMoTa, however, the 〈R2〉 exhibits a 
clear decrease with decreasing temperature, as depicted in Fig. 5b. To 
compute the diffusion correlation factor f in NbMoTa alloy, we per-
formed a much longer simulation, accessing 1 million jumps, to ensure 
that vacancies diffused over a large distance to sample different chem-
ical environments. The resulting correlation factors, f = 〈R2〉 /〈R2

a〉, are 
shown in Fig. 5c, for both Nb and NbMoTa. For Nb, the value of f re-
mains a constant of 0.73, which is consistent with the theoretical value 
for vacancy diffusion in body-centered cubic (bcc) lattice [35,36], 
verifying our model and the random-walk nature of lattice diffusion in 

this pure metal. Intriguingly, the correlation factor in NbMoTa varies 
extensively with temperature, from 0.50 at 2600 K to 0.03 at 800 K 
(decreasing by more than one order of magnitude). This strong tem-
perature dependence indicates an intensified diffusion correlation at 
lower temperatures for the MPEA. 

From a microscopic perspective, the diffusion correlation stems from 
the relationship between the current jump and previous jumps. For 
random-walk lattice diffusion, the vacancy jump along each direction 
has the same rate, which is independent of the previous jumps (i.e., there 
is no memory effect). Therefore, all directions have the equivalent jump 
probability, 1/Z, where Z denotes the coordination number (where Z = 8 
for bcc). The chance for a vacancy to return to its previous site (back-
ward jump probability) also equals 1/Z. Noted that a backward jump 
will cancel the previous jump and decreases the effectiveness of jumps 
and the value of 〈R2〉). In alloys, however, the backward jump proba-
bility depends on the local chemical environment and system tempera-
ture, which exhibits a distribution. Fig. 5d denotes this distribution of 
backward jump probability, collected from 50,000 diffusion jumps at 
800, 1400, and 2600 K. At the high temperature of 2600 K, the backward 
probability shows a peak value around 1/8, indicating a random-walk 
like nature. With decreasing temperature from 1400 to 800 K, we can 
see that the backward jump probability increases and approaches a 
value of 0.95 at 800 K. This means at low temperatures the vacancy has 
an increased chance to diffuse back, which reflects the predominated 
role of low barrier diffusion paths. The enhanced occurrence of back and 
forth jump lowers the jump effectiveness and reduce the mean squared 
displacement, 〈R2〉, which is the mechanistic origin of improved diffu-
sion correlation at lower temperatures (i.e., a smaller value of f). 

4. Diffusivity and effective diffusion barrier 

The temperature-dependent diffusivity of traditional metals is 
frequently described by an Arrhenius equation associated with thermal- 

Fig. 4. Vacancy diffusion behavior in equimolar NbMoTa alloy. (a) The recorded diffusion trajectories of five individual vacancies at 2600, 800, and 400 K after 400 
atom jumps. (b) The corresponding mean square displacement 〈R2〉 and accumulative mean square displacement 〈R2

a〉as a function of vacancy jumps. 
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activation theory, D(T) = D0exp( − ΔGm /kBT). In this equation, ΔGm, is 
the activation diffusion barrier (equal to the vacancy migration barrier 
ΔEm for pure metals) and D0 is the characteristic diffusivity, govern by 
material structure. In MPEAs, however, the vacancy migration barrier 
(ΔEm) has a broad spectrum, rather than a constant value. The key 
question is how to extract the effective diffusion barrier ΔGm from a 
spectrum. This barrier spectrum is an intrinsic material constant that is 
determined by alloy composition. As the diffusion correlation factor f in 
MPEAs varies with temperature, a revised diffusivity equation for 
MPEAs would take the form D(T) = f(T)D0exp( − ΔGm /kBT), with D0 =

λ2Zv0/6. With the obtained temperature-dependent diffusion correla-
tion factor f(T), we can then compute ΔGm if the diffusivity D(T) is 
available. According to the Einstein-Smoluchowski equation [37,38], 
the diffusivity, which is a function of the mean square displacement 〈R2〉

and time t, D = 〈R2〉/6t, can be computed from our neural network ki-
netic Monte Carlo simulations. 

In Fig. 6a, we present the variation of mean square displacement 〈R2〉

as a function of diffusion time at 2600, 1600, and 800 K for Nb, obtained 
from neural network kinetics simulations. While all simulations reach 

the same MSD of 0.5 Å
2
, for pure Nb the required time at lower tem-

peratures increases dramatically (exponentially). In the case of NbMoTa 
(Fig. 6b), the 〈R2〉 gradually decreases at lower temperatures for the 
same number of one million jumps, which is also accompanied by an 
increase in diffusion time. Having obtained the diffusivity (Fig. 7a) and 

correlation factor (Fig. 5c), we derive the effective activation barrier for 
diffusion of the two materials at various temperatures, shown in Fig. 7b. 
In contrast to a constant ΔGm around 1.05 eV for Nb, the diffusion 
activation barrier exhibits a clear temperature dependence for NbMoTa, 
decreasing from 1.65 eV at 2600 K to 1.46 eV at 800 K. This temperature 
dependence of effective diffusion barrier is intriguing, as it should be 
related to the vacancy migration barrier spectrum. For vacancy diffusion 
in pure metals, each jump direction will have the same migration bar-
rier, leading to a constant activation diffusion barrier at the system level. 
In MPEAs, the distribution of vacancy migration barriers and system 
temperature influences the probability of diffusion pathway being 
picked. Fig. 7c presents the probability density distribution of the visited 
migration barriers at 800, 1400, and 2600 K. These diffusion-selected 
barriers show a temperature dependence and, with decreasing temper-
ature, they shift to a smaller value (Fig. 7d). In Fig. 7e, we illustrate these 
visited barriers in terms of the portion in all available vacancy migration 
barriers (i.e., the full spectrum of barrier). It can be seen that, with 
decreasing temperature, these barriers decrease and concentrate in the 
left corner of the spectrum, indicating the lower barrier options are 
preferentially picked. 

Unlike pure metals, the local chemical fluctuations in MPEAs result 
in a rugged diffusion energy landscape accompanied by a broad intrinsic 
migration barrier spectrum. As temperatures decrease, the vacancy 
jumps progressively select the low barriers, thereby reducing the effec-
tive activation barrier ΔGm. This temperature dependence of ΔGm and 

Fig. 5. Vacancy diffusion correlation factor in Nb and NbMoTa. (a-b) The curves of mean square displacement 〈R2〉 and accumulative mean square displacement 〈R2
a〉

as a function of vacancy jumps for temperatures from 2600 to 800 K. (c) Variation of correlation factors f = 〈R2〉/〈R2
a〉 with temperature. (d) Fraction of backward 

jump probabilities for NbMoTa at 2600, 1400 and 800 K, indicating more frequent backward jumps at lower temperatures. 
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the diffusion correlation factor f is considered the prominent charac-
teristic of diffusion in MPEAs. This feature, which differentiates MPEAs 
from traditional metals such as pure metals and dilute alloys, should be 
responsible for abnormal diffusion behaviors when they occur. 

5. The role of chemical complexity on diffusion barrier and 
diffusivity 

Variations to overall alloy composition and local chemical ordering 
should influence the intrinsic vacancy migration barrier spectrum and 
hence diffusivity. To illustrate the effect of chemical composition on 
vacancy diffusion, we study and discuss three characteristic composi-
tions: equimolar NbMoTa, non-equimolar Nb10Mo70Ta20, and binary 
Nb65Mo35. Fig. 8a shows the corresponding vacancy diffusion barrier 
spectra, with indications of mean, E, and standard deviation, σ. In these 
alloys, Nb10Mo70Ta20 exhibits the highest E (1.92 eV) followed by 
NbMoTa (1.77 eV) and then Nb65Mo35 (1.63 eV). Concerning σ, 
Nb65Mo35 possesses the largest value (0.33 eV) followed by NbMoTa 
(0.26 eV) and Nb10Mo70Ta20 (0.17 eV). Fig. 8b presents the diffusivity as 
a function of inverse temperature (1/T) for these alloys, indicating an 
increase in diffusion rate from Nb10Mo70Ta20 to NbMoTa to Nb65Mo35. 
The influence of diffusion barrier spectrum on the diffusion correlation 
factor is presented in Fig. 8c for the three alloys. The Nb65Mo35 exhibits 
the smallest correlation factor (highest diffusion correlation), followed 
by NbMoTa and then Nb10Mo70Ta20. This trend of f follows the barrier 
variance σ, implying that a larger σ (a rougher diffusion energy land-
scape) results in an enhancing diffusion correlation. Concerning the 
effective diffusion barrier ΔGm, the Nb10Mo70Ta20 is the highest and 
Nb65Mo35 is the lowest, indicating a positive relationship between mean 
vacancy barrier E and effective barrier ΔGm. 

Having demonstrated the composition-dependent diffusivity and its 
dependence on the diffusion barrier spectrum, we next perform exten-
sive vacancy diffusion simulations for the entire ternary Nb-Mo-Ta 
space, aiming to understand the influence of chemical complexity. 
First, to illustrate the degree of chemical complexity, we adopt the 
conventional indicator of configurational entropy [18], which is defined 

as S = − R
∑N

i=1xilnxi where R is the gas constant and xi is the 

concentration of element i. Fig. 9a illustrates a three-fold symmetric 
configurational entropy map, showing the highest chemical complexity 
being in the center (equimolar concentration). Fig. 9b shows the diffu-
sivities (scaled by the diffusivity of pure Mo), obtained from one million 
diffusion jumps of neural network kinetics simulation at an intermediate 
temperature of 1600 K. Mo is chosen as the reference point due to its 
lowest vacancy diffusivity among the three pure elements. It is found 
that the composition with the lowest vacancy diffusivity is 
Nb5Mo65Ta30, clearly deviating from the equimolar concentration. This 
suggests that the diffusivity is not simply determined by the configura-
tional entropy, but its underlying diffusion barrier spectrum. When 
comparing the alloy diffusivity with pure Mo, as indicated by Fig. 9c, we 
can see that a large region of the composition space can have a higher 
diffusivity than Mo (red-colored region), indicating the sluggish diffu-
sion is not generic since the alloys can have rapid diffusion than its 
constituent metals. 

The inherent diffusion barrier spectrum, described by σ and E here, 
determines the two key parameters for diffusion, the diffusion correla-
tion factor f and activation energy ΔGm. A composition possessing a high 
E value leads to a high ΔGm (low diffusivity). A large variance σ, sug-
gesting a more rugged diffusion energy landscape, gives rise to a reduced 
f , or more correlated diffusion. Interestingly, diffusion correlation factor 
f can have a substantial influence on the diffusion rate. For example, the 
Nb5Mo65Ta30 alloy displays a lower diffusion rate compared to the 
Nb10Mo70Ta20 alloy. However, if the factor f is not considered, the 
diffusivity of Nb5Mo65Ta30 would consistently, yet inaccurately, be 
perceived as higher. 

6. Short- and long-range chemical order localizing vacancy 
diffusion 

Originating from the attraction or repulsion among the constituent 
elements of MPEAs, vacancy diffusion leads to the emergence of 
chemical order in various length scales, such as long-range or short- 
range. The emergence of chemically ordered structures presumably 
impacts diffusion. To elucidate the influence of chemical order, we 
examine vacancy diffusion in two alloy systems: binary MoTa, which can 
exhibit long-range order (LRO), and the ternary NbMoTa carrying short- 

Fig. 6. The Mean Square Displacement (MSD) plotted as a function of time for three different temperatures: 2600, 1600, and 800 K. Figure (a) presents the data for 
pure Nb (niobium), while Figure (b) shows the same for the equiatomic MPEA NbMoTa. 
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range order (SRO). 
We have readied two states of MoTa, one being a random solid so-

lution and the other showcasing a complete Mo-Ta B2 order, indicative 
of chemical LRO. Fig. 10a shows the diffusion trajectories in the random 
solution after 400 atomic jumps. As the temperature decreases from 
3000 to 1000 K, the trajectories become increasingly shortened. This is 
also evidenced by the mean squared displacement, 〈R2〉. Intriguingly, 
the diffusion trajectories in the B2 ordered alloy become even more 
localized, accompanied by decreases in 〈R2〉 (Fig. 10b). Notably, the 〈
R2〉 and diffusion trajectory in the ordered system at 1000 K are nearly 
zero after 400 jumps, indicating the vacancy is completely trapped in a 
local region. In Fig. 11a, we compare the temperature-dependent 
diffusivity for the two systems, demonstrating the effect of chemical 
LRO on lowering diffusion rate. This reduction becomes increasingly 
pronounced with decreasing temperature, which should own to change 

in the correlation factor and effective activation barrier. Fig. 11b depicts 
the correlation factors for both the random and long-range B2-ordered 
systems, with the value decreasing by four orders of magnitude in the 
B2-ordered system compared to a decrease by two orders in the random 
alloy. Fig. 11c presents the variation of effective diffusion barrier with 
temperature. The decrease in the diffusion barrier with temperature in 
the ordered system results from the disruption of the B2 order due to 
vacancy diffusion. 

After introducing chemical SRO into the NbMoTa alloy through 
neural network kinetics simulation, we further study its effect on va-
cancy diffusion. Fig. 12a-b present the diffusion behaviors for the 
random and short-range ordered systems after 400 jumps. In contrast to 
MoTa, the effect of chemical short-range order on diffusion is less sig-
nificant, though still observable. As shown in Fig. 13a, the diffusivity of 
SRO exhibits lower values, especially at lower temperatures (note that 

Fig. 7. The effective diffusion barrier in Nb and NbMoTa. (a) Vacancy diffusivity D as a function of 1000/T for Nb and NbMoTa. (b) The effective activation diffusion 
barrier ΔGm for the two systems. (c) Probability density function of visited migration barriers g(ΔEm) shifts negatively with decreasing temperature. (d) Temperature 
dependence of the mean visited barriers E and the effective diffusion barriers ΔGm. (e) The portion of vacancy diffusion barrier spectrum visited at different tem-
peratures. As temperature decreases, the accessible (visited) barriers drifts to the lower end of the intrinsic spectrum (black curve). 
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the diffusivity is plotted using a logarithmic scale). This SRO-lowered 
diffusivity originates from the enhanced diffusion correlation 
(Fig. 13b) and increased diffusion barrier (Fig. 13c). Through a 
comparative analysis of MoTa and NbMoTa, we infer that chemical 
ordering diminishes diffusion. The degree of this reduction is dependent 
on both the extent and range (long or short) of the chemical order. 

7. Discussion and conclusions 

Vacancy diffusion, which governs many kinetic processes, such as 
precipitation [39], segregation [40], and radiation defect annihilation 
[41], is particularly complex in MPEAs. This complexity, originating 
from local chemical fluctuations, give rise to a salient feature related to 
vacancy diffusion barrier—a spectral distribution [7–9]. This diffusion 
barrier spectrum is an inherent material constant akin to modulus, 
which is determined by the composition of crystalline alloy. The pres-
ence of a broad spectrum of diffusion barriers influences the probability 

of vacancy jumps along each pathway, leading to non-random vacancy 
diffusion. Unlike pure metals and dilute alloys, the diffusion activation 
(effective) barrier ΔGm and correlation factor f in multicomponent al-
loys are not constant, instead, they can substantially decrease with 
lowering the system temperature. The decrease in the ΔGm can be un-
derstood from the increased propensity towards pathways with lower 
barriers. As the temperature drops, vacancies favor pathways with lower 
barriers, which skews the visited barriers towards the lower end of the 
spectrum, leading to a reduced effective barrier ΔGm. This preferentially 
pathway selection inevitably affects the randomness of vacancy diffu-
sion and the correlation factor f . As the number of activated pathways 
diminishes with decreasing temperature, vacancy jumps become more 
concentrated along lower energy pathways, resulting in more coordi-
nated jumps (a lower value of f). From a theoretical perspective, the 
correlation factor is estimated as f = 1 − 2/Z, where Z denotes the co-
ordination number, equivalent to the number of jump pathways for 
vacancy [4]. For a pure bcc metal, all pathways have the same jump 

Fig. 8. Migration barrier spectrums and vacancy diffusion behaviors in three representative alloys. (a) Migration barrier spectrums in equimolar NbMoTa, 
Nb10Mo70Ta20, and Nb65Mo35 alloys. E and σ indicate mean and standard deviation, respectively. (b-d) Diffusivity D, diffusion correlation factor f , and effective 
diffusion barrier ΔGm in three alloys at different temperatures. 

Fig. 9. Vacancy diffusivity across the entire ternary space of NbMoTa alloys. (a) presents the configurational entropy, highlighting that the region of equimolar 
concentration located at the center. (b) shows the computed diffusivity D, revealing the lowest diffusivity at 1600 K occurs for Nb5Mo65Ta30 (marked by the arrow). 
(c) depicts the composition region possessing higher (red color) and lower (blue colors) diffusivity than that of Mo. The equimolar NbMoTa, marked by a white dot, 
displays a lower diffusivity than its constituent element, Mo. 
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probability and Z = 8. Within multicomponent alloys, the number of 
available pathways decreases as temperature decreases, effectively 
reducing Z at lower temperatures, thereby accounting for the decreased 
correlation factor. In the extreme scenario of one-dimensional diffusion, 
where Z equals 2, the value of f reduces to zero. 

The MPEAs containing a larger number of equimolar elements 
(higher configuration entropy) are typically thought to exhibit slow 
diffusion rates. The “sluggish diffusion” considered to be characteristic 
of MPEAs has sparked an interesting debate for a decade. Particularly in 
face-centered cubic alloys, various theories and models, such as perco-
lation theory, were developed to explain sluggish diffusion in concen-
trated binary alloys [42,43]. By sampling the diffusion rate throughout 
the entire compositional range of NbMoTa alloys, we found, intrigu-
ingly, that the alloy with the slowest diffusion situates in the 
non-equimolar region. Different from the configurational entropy 
aspect, we propose that the rate of diffusion is governed by the inherent 
vacancy migration barrier spectrum. In multicomponent alloys, the 
composition with a higher mean barrier introduces a larger effective 
diffusion barrier, leading to a reduction in the rate of vacancy jumps. A 
greater variance in the barrier spectrum, indicating a more rugged 
diffusion energy landscape, makes a more correlated vacancy jumps, 
hence a lowered diffusivity. 

As an emerging class of material systems, refractory MPEAs have 
attracted growing attention from the community due to their intriguing 
properties such as high-temperature strength [18,10] and high radiation 
resistance [44]. The evolution of these alloys opens up exciting 

opportunities for understanding and utilizing the vast design space 
along the composition dimension. Harnessing such space is of utmost 
significance as the alloys with non-equimolar concentrations typically 
can exhibit superior mechanical performance compared to their equi-
molar counterparts [10,45]. Here, we demonstrate an application of 
neural network framework that couples with machine learning and 
atomics simulations to efficiently predict vacancy diffusivity in the 
complete space of a ternary alloy. It is worth noting that different 
encoding methods, including coordinate system transformation [46,47] 
and local atomic configuration [48], have been proposed to predict 
vacancy diffusion in concentrated alloys. The neuron map (on-lattice) 
representation of atomic structure and chemistry [31] has dimension-
ality O(N), which scales linearly with the number of atoms N, and has 
the lowest dimensionality possible as a crystal descriptor. The model 
exhibits high accuracy in barrier prediction. For instance, the mean 
absolute errors (MAE) for dilute solution Nb10Mo10Ta80 and concen-
trated solution Nb20Mo60Ta20 are 0.019 and 0.024 eV, respectively. The 
error is smaller than 1.4 % of the true diffusion barrier [31]. With the 
rapid advancements of machine learning techniques for complex sys-
tems, such as autoencoder [49], generative model [50], and transformer 
[51], learning and predicting defects and their controlling properties in 
the entire refractory groups may soon become a plausible reality. 

In summary, we examine vacancy diffusion in multicomponent Nb- 
Mo-Ta alloys using network-based kinetic Monte Carlo simulations. It 
is found the diffusion correlation factor f and activation energy ΔGm are 
not constants in these alloys; rather, they exhibit a significant decrease 

Fig. 10. Vacancy diffusion trajectories over 400 atom jumps and the corresponding square displacement relationship at temperatures of 3000, 2000 and 1000 K. (a) 
presents data for MoTa with random solid solution, and (b) is for MoTa with long-range B2 order. 

Fig. 11. (a) Comparison of vacancy diffusivity for random and long-range ordered (LRO) MoTa. (b-c) shows the reduced diffusion correlation factor f and enhanced 
effective activation diffusion barrier ΔGm in the LRO alloy, accounting for the reduced diffusivity. 
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with decreasing temperatures. By efficiently sampling vacancy diffu-
sivity in the entire compositional space, we discover the slowest vacancy 
diffusion surprisingly occurs in the non-equimolar region, rather than 
the equimolar concentration. These interesting observations arise from 
the vacancy barrier spectrum that multicomponent alloys inherently 
hold. In the presence of chemical short-range order in NbMoTa alloy, 
vacancy diffusion exhibits a considerable decrease. This reduction in 
diffusion becomes particularly pronounced in MoTa alloys possessing 
long-range B2 order. 
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